Publications by authors named "J Trolinger"

In digital holography (DH), information in the hologram is recorded and stored in digital format in discrete bits. Like its parent, holography, DH evolved over many years with periods of dormancy and revival. Almost abandoned, multiple times, unanticipated events or developments in separate industries revived it with explosive, quantum jumps, making it useful and popular to a wide audience.

View Article and Find Full Text PDF

A single-shot digital holography system using an ultra-short pulsed laser is demonstrated to be very effective in suppressing the multiple-scattering noise associated with imaging dynamic targets in highly scattering environments, such as biological tissues and fuel injection systems. A planar off-axis reference wave configuration is used to generate a fixed carrier spatial frequency in the recorded holograms in order to separate coherent signal from incoherent noise in Fourier transformed holograms. The single-shot imaging system does not require averaging between multiple shots and can capture images of transient phenomena, such as the formation of diesel fuel injection sprays, and can overcome the problem of mechanical vibrations for recording holograms in industrial and laboratory environments.

View Article and Find Full Text PDF

We demonstrate a scheme for volume holographic storage based on the features of shift selectivity of a speckle reference-wave hologram. The proposed recording method permits more-efficient use of the recording medium and yields greater storage density than spherical or plane-wave reference beams. Experimental results of multiple hologram storage and replay in a photorefractive crystal of iron-doped lithium niobate are presented.

View Article and Find Full Text PDF

This paper describes the flight experiment, supporting ground science, and the design rationale for a project on spaceflight holography investigation in a virtual apparatus (SHIVA). SHIVA is a fundamental study of particle dynamics in fluids in microgravity. Gravitation effects and steady Stokes drag often dominate the equations of motion of a particle in a fluid and consequently microgravity provides an ideal environment in which to study the other forces, such as the pressure and viscous drag and especially the Basset history force.

View Article and Find Full Text PDF

In January 1992 the Space Shuttle Discovery carried the first International Microgravity Laboratory into Earth orbit for eight days. One of the many experiments carried out during the orbit was a combined study of triglycine sulfate crystal growth from solution and fluid-particle-dynamics studies in microgravity. Optical diagnostics included holocameras to provide concentration measurements and three-dimensional particle tracking.

View Article and Find Full Text PDF