Food Chem
February 2025
The physicochemical characterization of fresh, undiluted, cold-pressed oil from elderberry seeds (EO) is presented. The results showed EO's uniqueness for the 93 % presence of essential fatty acids, including linoleic n-6 (41 %), α-linolenic n-3 (38 %), and oleic n-9 (13 %) acids with favorable ratios for human nutrition, n-3/n-6 = 0.93.
View Article and Find Full Text PDFFlaxseed oil is one of the best sources of -3 fatty acids, thus its adulteration with refined oils can lead to a reduction in its nutritional value and overall quality. The purpose of this study was to compare different chemometric models to detect adulteration of flaxseed oil with refined rapeseed oil (RP) using differential scanning calorimetry (DSC). Based on the melting phase transition curve, parameters such as peak temperature (T), peak height (h), and percentage of area (P) were determined for pure and adulterated flaxseed oils with an RP concentration of 5, 10, 20, 30, and 50% (/).
View Article and Find Full Text PDFAdhesion is one of the main factors responsible for the probiotic properties of bacteria in the human gut. Membrane proteins affected by cellular damage are one of the key aspects determining adhesion. Fluid-bed-dried preparations containing probiotic bacteria were analyzed in terms of their stability (temperature of glass transition) and shelf life in different conditions (modified atmosphere, refrigeration).
View Article and Find Full Text PDFAn approach of implementing X-bar and R control charts as a statistical control tool to monitor the changes in the melting profile of fresh and stored flaxseed oils by differential scanning calorimetry (DSC) was used. Phase transition melting profiles were collected after 0, 2, 4, and 6 months of storing flaxseed oils, originating from five different cultivars. Four peaks at around -36, -30, -25, and -12 °C were identified using the deconvolution analysis procedure, which enabled the data to be collected at peak temperature (T), peak height (h), the peak area (A), and the percentages of the area (P A), as well as the ratio calculated from these parameters.
View Article and Find Full Text PDFDistinguishing oil samples from each other is challenging but it is crucial for ensuring food quality, and for detecting and preventing the possible adulteration of these products. Lipidomic profiling is believed to provide sufficient information to get fit-to-purpose confidence of oil identification as well as to deliver oil-specific lipid features which could be used as targets for routine authenticity testing of camelina, flax, and hemp oil in food control laboratories. Conducted di- and triacylglycerol profiling by LC/Q-TOFMS yielded successful differentiation of the oils.
View Article and Find Full Text PDF