Limited nutrient supply to the fetus results in physiologic and metabolic adaptations that have unfavorable consequences in the offspring. In a swine animal model, we aimed to study the effects of gestational caloric restriction and early postnatal metformin administration on offspring's adipose tissue epigenetics and their association with morphometric and metabolic variables. Sows were either underfed (30% restriction of total food) or kept under standard diet during gestation, and piglets were randomly assigned at birth to receive metformin (n = 16 per group) or vehicle treatment (n = 16 per group) throughout lactation.
View Article and Find Full Text PDFEur J Nutr
September 2023
Purpose: Obesity during childhood has become a pandemic disease, mainly caused by a diet rich in sugars and fatty acids. Among other negative effects, these diets can induce cognitive impairment and reduce neuroplasticity. It is well known that omega-3 and probiotics have a beneficial impact on health and cognition, and we have hypothesized that a diet enriched with Bifidobacterium breve and omega-3 could potentiate neuroplasticity in prepubertal pigs on a high-fat diet.
View Article and Find Full Text PDFPurpose: Milk fat globule membrane (MFGM) has components with emulsifier properties that could affect the provision of substrates to the brain. We evaluated the effects of MFGM plus milk fat addition to infant formulas on docosahexaenoic acid (DHA) availability and gut development.
Methods: In Experiment 1, suckling piglets were divided into 3 groups: Group L1 (n = 8): fed with a vegetal fat formula with palm oil; L2 (n = 8): canola oil formula and L3 (n = 8): milk fat + canola oil + 1% Lacprodan (3% MFGM of total protein content).
Objectives: Maternal overfeeding during gestation may lead to adverse metabolic programming in the offspring mediated by epigenetic alterations. Potential reversal, in early life, of these alterations may help in the prevention of future cardio-metabolic conditions. In this context, our aims were: (1) to study the effects of maternal overfeeding on the metabolic and epigenetic programming of offspring's adipose tissue; and (2) to test the potential of postnatal metformin treatment to reverse these changes.
View Article and Find Full Text PDF