We present an experimental study of the effect of continuous-wave optical injection (OI) from a vertical-cavity surface-emitting laser (VCSEL) on the timing jitter of a gain-switched discrete-mode semiconductor laser (DML). Timing jitter was analyzed over a wide range of temperatures of the DML, which allowed tuning the detuning between the lasers emissions, and it was compared with the inter-pulse timing jitter. We have found that there is a range of detunings in which OI diminishes the jitter by 70% with respect to the jitter of the solitary DML.
View Article and Find Full Text PDFSynchronization phenomena is ubiquitous in nature, and in spite of having been studied for decades, it still attracts a lot of attention as is still challenging to detect and quantify, directly from the analysis of noisy signals. Semiconductor lasers are ideal for performing experiments because they are stochastic, nonlinear, and inexpensive and display different synchronization regimes that can be controlled by tuning the lasers' parameters. Here, we analyze experiments done with two mutually optically coupled lasers.
View Article and Find Full Text PDFOptical feedback can reduce the linewidth of a semiconductor laser by several orders of magnitude, but it can also cause line broadening. Although these effects on the temporal coherence of the laser are well known, a good understanding of the effects of feedback on the spatial coherence is still lacking. Here we present an experimental technique that allows discriminating the effects of feedback on temporal and spatial coherence of the laser beam.
View Article and Find Full Text PDFSemiconductor lasers are very sensitive to optical feedback. Although it is well known that coherent feedback lowers the threshold of the laser, the characteristics of the transition from low-coherence radiation-dominated by spontaneous emission-below threshold to high-coherence radiation-dominated by stimulated emission-above threshold have not yet been investigated. Here we show experimentally that, in contrast to the transition that occurs in the solitary laser, in the laser with feedback the transition to high-coherence emission can occur abruptly.
View Article and Find Full Text PDFTime crystal oscillations in interacting, periodically driven many-particle systems are highly regular oscillations that persist for long periods of time, are robust to perturbations, and whose frequency differs from the frequency of the driving signal. Making use of underlying similarities of spatially-extended systems and time-delayed systems (TDSs), we present an experimental demonstration of time-crystal-like behavior in a stochastic, weakly modulated TDS. We consider a semiconductor laser near threshold with delayed feedback, whose output intensity shows abrupt spikes at irregular times.
View Article and Find Full Text PDF