Regulatory T (Treg) cell infiltration of solid tumors often correlates with poor prognosis, but their tumor-suppressive function lacks mechanistic understanding. Through a combination of transgenic mice, cell fate mapping, adoptive transfer, and co-injection strategies, we demonstrate that Treg cell ablation-dependent anti-tumor effects in murine breast cancer require intratumoral recruitment of CCR2 inflammatory monocytes, which primarily differentiate into tumor-associated macrophages (TAMs), and lead to reprogramming of their function in an IFN-γ-dependent manner. Furthermore, transcriptomic signatures from murine TAMs in Treg cell-ablated conditions correlate with increased overall survival in human breast cancer.
View Article and Find Full Text PDFThe sphingolipid ceramide 1-phosphate (C1P) directly binds to and activates group IVA cytosolic phospholipase A (cPLAα) to stimulate the production of eicosanoids. Because eicosanoids are important in wound healing, we examined the repair of skin wounds in knockout (KO) mice lacking cPLAα and in knock-in (KI) mice in which endogenous cPLAα was replaced with a mutant form having an ablated C1P interaction site. Wound closure rate was not affected in the KO or KI mice, but wound maturation was enhanced in the KI mice compared to that in wild-type controls.
View Article and Find Full Text PDFTriple negative breast cancer (TNBC) has an unusually low 5-year survival rate linked to higher metastatic rates. Our laboratory recently delineated a role for the alternative RNA splicing (AS) of cytoplasmic polyadenylation element binding protein 2 (CPEB2), via inclusion/exclusion of exon 4, in the metastasis of TNBC. In these studies, the mechanism governing the inclusion/exclusion of exon 4 was examined.
View Article and Find Full Text PDFMultidrug resistance (MDR) represents a major hindrance to the efficacy of cancer chemotherapeutics. While surgical resection, radiation, and chemotherapy can be used to reduce tumor size, the subsequent appearance of drug resistant cells is a frequent problem. One of the main contributors to the development of MDR is increased expression of multi-drug resistant protein 1 (MDR1), also known as P-glycoprotein (P-gp).
View Article and Find Full Text PDFThe translational regulator cytosolic polyadenylation element-binding protein 2 (CPEB2) has two isoforms, CPEB2A and CPEB2B, derived by alternative splicing of RNA into a mature form that either includes or excludes exon 4. Previously, we reported that this splicing event is highly dysregulated in aggressive forms of breast cancers, which overexpress CPEB2B. The loss of CPEB2A with a concomitant increase in CPEB2B was also required for breast cancer cells to resist cell death because of detachment (anoikis resistance) and metastasize To examine the mechanism by which CPEB2 isoforms mediate opposing effects on cancer-related phenotypes, we used next generation sequencing of triple negative breast cancer cells in which the isoforms were specifically down-regulated.
View Article and Find Full Text PDF