The development of three-dimensional aperiodic energy storage devices is in part impeded by the lack of appropriate aperiodic templates that can withstand the thermal conditions required to deposit energy storage materials within their void space. Herein, the feasibility of an aperiodic three-dimensional architecture for energy storage is demonstrated for the first time by constructing a tricontinuous conductor-insulator-conductor (CIC) nanocapacitor on an aperiodic nanoporous gold scaffold. To accomplish this, the scaffold was characterized using small-angle X-ray scattering (SAXS) during exposure to a thermal environment, revealing that its microstructure eventually stabilizes after undergoing a phase of rapid coarsening, indicating a departure from the 1/4 time-dependent power-law coarsening behavior usually observed at the early stage of the coarsening process.
View Article and Find Full Text PDFMetal nanostructures have attracted much attention in biomedical, plasmonic, hydrogen storage, and high-energy battery applications. However, the synthesis of various nanostructures of highly reactive elements ( Mg) is still a difficult task and no single-approach has been reported for synthesizing such nanostructures. In this work, we produced magnesium nanoparticles (NPs), nanowires (NWs) and nanoneedles (NNs) in a single-approach, based on thermal evaporation without any carrier gas.
View Article and Find Full Text PDFTo explore the role of Li in establishing room-temperature ferromagnetism in SnO, the structural, electronic and magnetic properties of Li-doped SnO compounds were studied for different size regimes, from nanoparticles to bulk crystals. Li-doped nanoparticles show ferromagnetic ordering plus a paramagnetic contribution for particle sizes in the range of 16-51 nm, while pure SnO and Li-doped compounds below and above this particular size range are diamagnetic. The magnetic moment is larger for compositions where the Li substitutes for Sn than for compositions where Li prevalently occupies interstitial sites.
View Article and Find Full Text PDFMicrosc Microanal
February 2020
Surfaces of polycrystalline ferritic Fe-Cr steel with grain sizes of about 13 µm in diameter were investigated with surface sensitive techniques. Thin oxide layers, with a maximum thickness of about 100 nm, were grown by oxidation in air at temperatures up to 450°C and were subsequently characterized using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and atomic force microscopy. Correlative microscopy was applied, which allows for element-specific depth profiles on selected grains with a particular crystal orientation.
View Article and Find Full Text PDF