Publications by authors named "J Teske"

Despite the biomedical importance of haematopoietic stem cells and haematopoietic progenitor cells, their in vitro stabilization in a developmental context has not been achieved due to limited knowledge of signals and markers specifying the multiple haematopoietic waves as well as ethically restricted access to the human embryo. Thus, an in vitro approach resembling aspects of haematopoietic development in the context of neighbouring tissues is of interest. Our established human pluripotent stem cell-derived heart-forming organoids (HFOs) recapitulate aspects of heart, vasculature and foregut co-development.

View Article and Find Full Text PDF

Airway smooth muscle (ASM) cells play important roles in airway remodeling of asthma. Our previous studies show that in vivo administration of glial-derived neurotrophic factor (GDNF) in mice induces thickening and collagen deposition in bronchial airways, whereas chelation of GDNF by GFRα1-Fc attenuates airway remodeling in the context of allergen exposure. To determine whether GDNF has direct effects on ASM, in this study, we examined GDNF in ASM cells from normal versus asthmatic humans.

View Article and Find Full Text PDF

Drug-related fatalities in the EU are predominantly associated with opioids. MDMA (Ecstasy) consumption results in fewer lethal intoxications despite its widespread use. This study investigates MDMA-related fatalities, focusing on enantiomer ratios of MDMA and its metabolite MDA to explore the role of metabolism in fatal outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • Quantum processor designs need to scale up qubit numbers while ensuring strong connectivity and high accuracy in operations.
  • Current semiconductor spin qubit arrays face limitations due to wiring and interference, but the new SpinBus architecture addresses these by connecting qubits through electron shuttling and using lower frequencies for better performance.
  • Simulations show that the SpinBus approach can support at least 144 qubits with high fidelity, potentially enabling future quantum processors to meet the demands of scalable quantum computing.
View Article and Find Full Text PDF

Due to its structural and functional complexity the heart imposes immense physical, physiological and electromechanical challenges on the engineering of a biological replacement. Therefore, to come closer to clinical translation, the development of a simpler biological assist device is requested. Here, we demonstrate the fabrication of tubular cardiac constructs with substantial dimensions of 6 cm in length and 11 mm in diameter by combining human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and human foreskin fibroblast (hFFs) in human fibrin employing a rotating mold technology.

View Article and Find Full Text PDF