Publications by authors named "J Terblanche"

The highly invasive Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is currently expanding its geographic distribution into cooler temperate areas of the Northern Hemisphere. In marginal conditions, the invasion potential of medfly depends in part on innate tolerance to the novel environmental conditions. Physiological tolerances are potentially influenced by interactions among multiple factors, such as organism age or reproductive maturity, sex, and mating status.

View Article and Find Full Text PDF

Knowing how environmental conditions affect performance traits in pest insects is important to improve pest management strategies. It can be informative for monitoring, but also for control programs where insects are mass-reared, and field-released. Here, we investigated how adult thermal acclimation in sterile Bactrocera dorsalis affects dispersal and recapture rates in the field using a mark-release-recapture method.

View Article and Find Full Text PDF

Efficient water balance is key to insect success. However, the hygric environment is changing with climate change; although there are compelling models of thermal vulnerability, water balance is often neglected in predictions. Insects survive desiccating conditions by reducing water loss, increasing their total amount of water (and replenishing it) and increasing their tolerance of dehydration.

View Article and Find Full Text PDF

Heatwaves are increasing in frequency and intensity due to climate change, pushing animals beyond physiological limits. While most studies focus on survival limits, sublethal effects on fertility tend to occur below lethal thresholds, and consequently can be as important for population viability. Typically, male fertility is more heat-sensitive than female fertility, yet direct comparisons are limited.

View Article and Find Full Text PDF

A major component of mosquito's climate change response is their heat tolerance, and any ability to rapidly adjust to extreme environmental conditions through phenotypic plasticity. The excessive use of insecticides for the control of major mosquito species leads to resistant populations, however it is largely unclear if this concurrently impacts thermal stress resistance and their potential to adjust tolerance via phenotypic plasticity. Culex pipiens pipiens, Culex pipiens molestus and Aedes albopictus populations obtained from the same region were subjected for 12 generations to selection trials to larvicides Diflubenzuron (DFB) and Bacillus thuringiensis subsp.

View Article and Find Full Text PDF