The purpose of this work was to test the application of selection criteria that consider the genetic variances of future generations. This has not been done previously in numerically large livestock breeding programs based on estimated rather than assumed known marker effects. A generic pure-line pig breeding program was simulated in which 40 males and 400 females were selected every generation.
View Article and Find Full Text PDFThe ability to predict the outcome of selection and mating decisions enables breeders to make strategically better selection decisions. To improve genetic progress, those individuals need to be selected whose offspring can be expected to show high genetic variance next to high breeding values. Previously published approaches enable to predict the variance of descendants of 2 future generations for up to 4 founding haplotypes, or 2 outbred individuals, based on phased genotypes, allele effects, and recombination frequencies.
View Article and Find Full Text PDFBackground: Breeding programs are judged by the genetic level of animals that are used to disseminate genetic progress. These animals are typically the best ones of the population. To maximise the genetic level of very good animals in the next generation, parents that are more likely to produce top performing offspring need to be selected.
View Article and Find Full Text PDFIn the last decade, a number of methods have been suggested to deal with large amounts of genetic data in genomic predictions. Yet, steadily growing population sizes and the suboptimal use of computational resources are pushing the practical application of these approaches to their limits. As an extension to the C/CUDA library , we have developed tailored solutions for the computation of genotype matrix multiplications which is a critical bottleneck in the empirical evaluation of many statistical models.
View Article and Find Full Text PDFGlobal sustainability issues such as climate change, biodiversity loss and food security require food systems to become more resource efficient and better embedded in the local environment. This needs a transition towards more diverse, circular and low-input dairy farming systems with animals best suited to the specific environmental conditions. When varying environmental challenges are posed to animals, cows need to become resilient to disturbances they face.
View Article and Find Full Text PDF