The development of a controllable, selective, and repeatable etch process is crucial for controlling the layer thickness and patterning of two-dimensional (2D) materials. However, the atomically thin dimensions and high structural similarity of different 2D materials make it difficult to adapt conventional thin-film etch processes. In this work, we propose a selective, damage-free atomic layer etch (ALE) that enables layer-by-layer removal of monolayer WSe without altering the physical, optical, and electronic properties of the underlying layers.
View Article and Find Full Text PDFTungsten diselenide (WSe) has received significant attention because it shows the pristine ambipolar property arising from the Fermi level located near the midgap and can be converted to uni-polar form. In this study, we observe the formation of tungsten oxide (WO) on the WSe surface after oxygen plasma treatment and show that the p-type WO dopes WSe. In our devices that underwent plasma treatment, it was interesting to find a strong correlation between the changes in the work function of WSe and a gold electrode, and the channel and contact resistances.
View Article and Find Full Text PDFHigh quality electrical contact to semiconducting transition metal dichalcogenides (TMDCs) such as MoS is key to unlocking their unique electronic and optoelectronic properties for fundamental research and device applications. Despite extensive experimental and theoretical efforts reliable ohmic contact to doped TMDCs remains elusive and would benefit from a better understanding of the underlying physics of the metal-TMDC interface. Here we present measurements of the atomic-scale energy band diagram of junctions between various metals and heavily doped monolayer MoS using ultrahigh vacuum scanning tunneling microscopy (UHV-STM).
View Article and Find Full Text PDFThe epsilon-amino groups of the six lysyl residues of the fd gene 5 DNA-binding protein have been modified by reductive methylation to form N epsilon, N epsilon-dimethyl lysyl derivatives containing 13C-labeled methyl groups. The alpha-amino terminus of the protein was not accessible to methylation. Circular dichroism studies show that the modified protein binds to fd DNA, but with a slightly reduced affinity compared with that of unmodified gene 5 protein.
View Article and Find Full Text PDFThe carbon- 13 spin-lattice relaxation times and nuclear Overhauser enhancements of the N epsilon-monomethyllysine, N epsilon,N epsilon-dimethyllysine, and N alpha,N alpha-dimethylalanine resonances of 13C-methylated concanavalin A have been measured at three carbon frequencies and compared to the relaxation parameters predicted by several motional models. The experimental parameters cannot be reproduced by a simple dipolar relaxation model which includes isotropic reorientation of the protein plus free internal rotational diffusion of the methyl groups but are well predicted by a wobble in a cone model which includes isotropic reorientation of the protein at 33 ns, free internal rotational diffusion of the methyl groups, and a wobble diffusion which reflects the net motion of the amino acid side chains. The analysis indicates that the methylated epsilon-amino side chains exhibit only slightly more motional freedom than does the methylated N-terminal alpha-amino group and suggests some restriction of methyl group rotation in the dimethylamino residues.
View Article and Find Full Text PDF