Publications by authors named "J Tawil"

ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy.

View Article and Find Full Text PDF

These highlights focus on the research in lung transplantation (LTX) that was published in 2022 and includes the assessment and optimization of candidates for LTX, donor optimization, the use of organs from donation after circulatory death, and outcomes when using marginal or novel donors; recipient factors affecting LTX, including age, disease, the use of extracorporeal life support; and special situations, such as coronavirus disease2019, pediatric LTX, and retransplantation. The remainder of the article focuses on the perioperative management of LTX, including the perioperative risk factors for acute renal failure (acute kidney injury); the incidence and management of phrenic nerve injury, delirium, and pain; and the postoperative management of hyperammonemia, early postoperative infections, and the use of donor-derived cell-free DNA to detect rejection.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AhR)-interacting protein (AIP) is a ubiquitously expressed, immunophilin-like protein best known for its role as a co-chaperone in the AhR-AIP-Hsp90 cytoplasmic complex. In addition to regulating AhR and the xenobiotic response, AIP has been linked to various aspects of cancer and immunity that will be the focus of this review article. Loss-of-function AIP mutations are associated with pituitary adenomas, suggesting that AIP acts as a tumor suppressor in the pituitary gland.

View Article and Find Full Text PDF

Mutations in the degradative ubiquitin ligase anaphase-promoting complex (APC) alter neurodevelopment by impairing proteasomal protein clearance, but our understanding of their molecular and cellular pathogenesis remains limited. Here, we employ the proteomic-based discovery of APC substrates in APC mutant mouse brain and human cell lines and identify the chromosome-passenger complex (CPC), topoisomerase 2a (Top2a), and Ki-67 as major chromatin factors targeted by the APC during neuronal differentiation. These substrates accumulate in phosphorylated form, suggesting that they fail to be eliminated after mitosis during terminal differentiation.

View Article and Find Full Text PDF