Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations using hundreds of logical qubits. Indeed, accessing a quantitative description of chemical systems while minimizing quantum resources is an essential challenge given the limited qubit capabilities of current quantum processors. We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit through coupling the density-based basis-set corrections approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically adapted to a given system and user-defined qubit budget.
View Article and Find Full Text PDFWe present the first application to real molecular systems of the recently proposed linear-response theory for the density-based basis-set correction method [, , 234107 (2023)]. We apply this approach to accelerate the basis-set convergence of excitation energies in the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) method. We use an approximate linear-response framework that neglects the second-order derivative of the basis-set correction density functional and consists in simply adding to the usual Hamiltonian the one-electron potential generated by the first-order derivative of the functional.
View Article and Find Full Text PDFThis work reports an efficient density-fitting implementation of the density-based basis-set correction (DBBSC) method in the MOLPRO software. This method consists in correcting the energy calculated by a wave-function method with a given basis set by an adapted basis-set correction density functional incorporating the short-range electron correlation effects missing in the basis set, resulting in an accelerated convergence to the complete-basis-set limit. Different basis-set correction density-functional approximations are explored and the complementary-auxiliary-basis-set single-excitation correction is added.
View Article and Find Full Text PDFBackground And Objective: Patients with presumed nonlesional focal epilepsy-based on either MRI or histopathologic findings-have a lower success rate of epilepsy surgery compared with lesional patients. In this study, we aimed to characterize a large group of patients with focal epilepsy who underwent epilepsy surgery despite a normal MRI and had no lesion on histopathology. Determinants of their postoperative seizure outcomes were further studied.
View Article and Find Full Text PDF