Publications by authors named "J TENENBAUM"

Starting in early infancy, our perception and predictions are rooted in strong expectations about the behavior of everyday objects. These intuitive physics expectations have been demonstrated in numerous behavioral experiments, showing that even pre-verbal infants are surprised when something impossible happens (e.g.

View Article and Find Full Text PDF

How people plan is an active area of research in cognitive science, neuroscience, and artificial intelligence. However, tasks traditionally used to study planning in the laboratory tend to be constrained to artificial environments, such as Chess and bandit problems. To date there is still no agreed-on model of how people plan in realistic contexts, such as navigation and search, where values intuitively derive from interactions between perception and cognition.

View Article and Find Full Text PDF

It is widely agreed upon that morality guides people with conflicting interests towards agreements of mutual benefit. We therefore might expect numerous proposals for organizing human moral cognition around the logic of bargaining, negotiation, and agreement. Yet, while "contractualist" ideas play an important role in moral philosophy, they are starkly underrepresented in the field of moral psychology.

View Article and Find Full Text PDF

Introduction: Public health systems worldwide face increasing challenges in addressing complex health issues and improving population health outcomes. This experience report introduces the concept of a Learning Public Health System (LPHS) as a potential solution to transform public health practice. Building upon the framework of a Learning Health System (LHS) in healthcare, the LPHS aims to create a dynamic, data-driven ecosystem that continuously improves public health interventions and policies.

View Article and Find Full Text PDF

What do we want from machine intelligence? We envision machines that are not just tools for thought but partners in thought: reasonable, insightful, knowledgeable, reliable and trustworthy systems that think with us. Current artificial intelligence systems satisfy some of these criteria, some of the time. In this Perspective, we show how the science of collaborative cognition can be put to work to engineer systems that really can be called 'thought partners', systems built to meet our expectations and complement our limitations.

View Article and Find Full Text PDF