Publications by authors named "J T Streelman"

Methods from Machine Learning (ML) and Computer Vision (CV) have proven powerful tools for quickly and accurately analyzing behavioral recordings. The computational complexity of these techniques, however, often precludes applications that require real-time analysis: for example, experiments where a stimulus must be applied in response to a particular behavior or samples must be collected soon after the behavior occurs. Here, we describe SARTAB (Scalable Automated Real-Time Analysis of Behavior), a system that achieves automated real-time behavior detection by continuously monitoring animal positions relative to behaviorally relevant Regions Of Interest (ROIs).

View Article and Find Full Text PDF

Chromosomal inversions are an important class of genetic variation that link multiple alleles together into a single inherited block that can have important effects on fitness. To study the role of large inversions in the massive evolutionary radiation of Lake Malawi cichlids, we used long-read technologies to identify four single and two tandem inversions that span half of each respective chromosome, and which together encompass over 10% of the genome. Each inversion is fixed in one of the two states within the seven major ecogroups, suggesting they played a role in the separation of the major lake lineages into specific lake habitats.

View Article and Find Full Text PDF

Background: Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation.

Methods: This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish Amphiprion ocellaris, producing the first cellular atlas of a sex-changing brain.

View Article and Find Full Text PDF

The telencephalon has undergone remarkable diversification and expansion throughout vertebrate evolution, exhibiting striking variations in structural and functional complexity. Nevertheless, fundamental features are shared across vertebrate taxa, such as the presence of distinct regions including the pallium, subpallium, and olfactory structures. Teleost fishes have a uniquely "everted" telencephalon, which has confounded comparisons of their brain regions to other vertebrates.

View Article and Find Full Text PDF

Sexual differentiation of the brain occurs in all major vertebrate lineages but is not well understood at a molecular and cellular level. Unlike most vertebrates, sex-changing fishes have the remarkable ability to change reproductive sex during adulthood in response to social stimuli, offering a unique opportunity to understand mechanisms by which the nervous system can initiate and coordinate sexual differentiation. This study explores sexual differentiation of the forebrain using single nucleus RNA-sequencing in the anemonefish , producing the first cellular atlas of a sex-changing brain.

View Article and Find Full Text PDF