Fiber optic technology connects the world through the Internet, enables remote sensing, and connects disparate functional optical devices. Highly confined silicon photonics promises extreme scale and functional integration. However, the optical modes of silicon nanowire waveguides and optical fibers are very different, making efficient fiber-chip coupling a challenge.
View Article and Find Full Text PDFCharacterising quantum states of light in the 2 µm band requires high-performance shot-noise limited detectors. Here, we present the characterisation of a homodyne detector that we use to observe vacuum shot-noise via homodyne measurement with a 2.07 µm pulsed mode-locked laser.
View Article and Find Full Text PDFApplied quantum optics stands to revolutionise many aspects of information technology, provided performance can be maintained when scaled up. Silicon quantum photonics satisfies the scaling requirements of miniaturisation and manufacturability, but at 1.55 µm it suffers from problematic linear and nonlinear loss.
View Article and Find Full Text PDFFuture quantum computers require a scalable architecture on a scalable technology-one that supports millions of high-performance components. Measurement-based protocols, using graph states, represent the state of the art in architectures for optical quantum computing. Silicon photonics technology offers enormous scale and proven quantum optical functionality.
View Article and Find Full Text PDFThe ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit.
View Article and Find Full Text PDF