Publications by authors named "J T McGaughy"

Objective: Prenatal protein malnutrition produces anatomical and functional changes in the developing brain that persist despite immediate postnatal nutritional rehabilitation. Brain networks of prenatally malnourished animals show diminished activation of prefrontal areas and an increased activation of hippocampal regions during an attentional task [1]. While a reduction in cell number has been documented in hippocampal subfield CA1, nothing is known about changes in neuron numbers in the prefrontal or parahippocampal cortices.

View Article and Find Full Text PDF

The anterior cingulate cortex (ACC) has been shown to be critical to many aspects of executive function including filtering irrelevant information, updating response contingencies when reinforcement contingencies change and stabilizing task sets. Nonspecific lesions to this region in rats produce a vulnerability to distractors that have gained salience through prior associations with reinforcement. These lesions also exacerbate cognitive fatigue in tests of sustained attention but do not produce global attentional impairments nor do they produce distractibility to novel distractors that do not have a prior association with reinforcement.

View Article and Find Full Text PDF

Prenatal protein malnutrition (PPM) alters the developing brain including changes in monoaminergic systems and attention. In the present study, we used in vivo microdialysis to examine the relationship between PPM, acute stress, and extracellular serotonin (5HT), dopamine (DA) and norepinephrine (NE) in both hemispheres of lateral orbital frontal cortices (lOFC) in the adult rat. We hypothesized that prenatal protein malnutrition would alter extracellular concentrations of cortical monoamines.

View Article and Find Full Text PDF

There is increasing evidence that the maternal environment exerts enduring influences on the fetal brain. In response to certain environmental stimuli such as reduced protein content, the fetus changes the course of its brain development, which leads to specific and programed changes in brain anatomy and physiology. These alterations produce a brain with a fundamentally altered organization, which then translates to alterations in adult cognitive function.

View Article and Find Full Text PDF

Protein malnutrition during gestation alters brain development and produces specific behavioral and cognitive changes that persist into adulthood and increase the risks of neuropsychiatric disorders. Given evidence for the role of the prefrontal cortex in such diseases, it is significant that studies in humans and animal models have shown that prenatal protein malnutrition specifically affects functions associated with prefrontal cortex. However, the neural basis underlying these changes is unclear.

View Article and Find Full Text PDF