Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.
View Article and Find Full Text PDFAdvancements in clinical chemistry have major implications in terms of public health, prompting many clinicians to seek out chemical information to aid in diagnoses and treatments. While mass spectrometry (MS) and hyphenated-MS techniques such as LC-MS or tandem MS/MS have long been the analytical methods of choice for many clinical applications, these methods routinely demonstrate difficulty in differentiating between isomeric forms in complex matrices. Consequently, ion mobility spectrometry (IM), which differentiates molecules on the basis of size, shape, and charge, has demonstrated unique advantages in the broad application of stand-alone IM and hyphenated IM instruments towards clinical challenges.
View Article and Find Full Text PDFBCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.
View Article and Find Full Text PDFBackground: The COVID-19 pandemic has highlighted the need for more effective immunization programs, including in limited resource settings. This paper presents outcomes and lessons learnt from a COVID-19 vaccination campaign (VC), which used a tailored adaptive strategy to optimise vaccine uptake in the Boeny region of Madagascar.
Methods: Guided by the Dynamic Sustainability Framework (DSF), the VC implementation was regularly reviewed through multi-sectoral stakeholder feedback, key informant interviews, problem-solving meetings, and weekly monitoring of outcome indicators to identify and apply key adaptations.
Background: Adequate knowledge and awareness regarding diseases are essential for appropriate, high-quality healthcare. Female Genital Schistosomiasis (FGS) is a non-sexually transmitted gynaecological disease that is caused by the presence of Schistosoma haematobium eggs in the female genital tract and the resulting immune response that causes tissue damage. It is estimated to affect 56 million women, mostly in sub-Saharan Africa (SSA), where healthcare workers (HCWs) have limited awareness and knowledge of FGS.
View Article and Find Full Text PDF