Publications by authors named "J T Maxey"

Neu-Laxova syndrome (NLS) is a rare lethal disorder with autosomal recessive inheritance and is characterized by multiple congenital anomalies. Our case of NLS presented with severe intrauterine growth restriction (IUGR), abnormal facial features, severe central nervous system malformations, skeletal muscle contractures, and the hallmark signs of NLS: ichthyotic skin and excessive subcutaneous tissue with edema. Additionally, testing amniotic fluid from a prior pregnancy with a fetus showing similar abnormalities revealed several regions of homozygosity; one of these regions involved chromosome 1p13.

View Article and Find Full Text PDF

Time-lapse in vivo microscopy studies of cellular morphology and physiology are crucial toward understanding brain function but have been infeasible in the fruit fly, a key model species. Here we use laser microsurgery to create a chronic fly preparation for repeated imaging of neural architecture and dynamics for up to 50 days. In fly mushroom body neurons, we track axonal boutons for 10 days and record odor-evoked calcium transients over 7 weeks.

View Article and Find Full Text PDF

We present a robot that enables high-content studies of alert adult Drosophila by combining operations including gentle picking; translations and rotations; characterizations of fly phenotypes and behaviors; microdissection; or release. To illustrate, we assessed fly morphology, tracked odor-evoked locomotion, sorted flies by sex, and dissected the cuticle to image neural activity. The robot's tireless capacity for precise manipulations enables a scalable platform for screening flies' complex attributes and behavioral patterns.

View Article and Find Full Text PDF

Background: The importance of the tip-apex distance (TAD) to predict the cut-out risk of fixed angle hip implants has been widely discussed in the scientific literature. Intra-operative determination of TAD is difficult and can be hampered by image quality, body habitus, and image projection. The purpose of this paper is to evaluate, through a cadaveric study, a novel computer assisted surgery system (ADAPT), which is intended for intraoperative optimisation of lag screw positioning during antegrade femoral nailing.

View Article and Find Full Text PDF