Publications by authors named "J T Duan"

Nonalcoholic fatty liver disease (NAFLD) is considered one of the most common metabolic disorders worldwide. Although the pathoetiology of NAFLD is not fully elucidated, recent evidence suggests the involvement of stress, inflammation, and programmed death in the onset and progression of the disease. This investigation aimed to evaluate the effects of ellagic acid (EA), a known herbal antioxidant, on a high-fat diet (HFD)-induced animal model of NAFLD by evaluating the status of lipid profile, necroptosis (RIPK1, RIPK3, and MLKL), autophagy (LC3, ATG5, and BECN1), inflammation (TNF-α, IL-6, IL-4, and IL-10), and stress (SOD, CAT, GR, GPx, and MDA).

View Article and Find Full Text PDF

To explore the association between different feeding methods during the first six months after birth and the physical growth of children aged 3 to 5 years. Data were from the "Taicang and Wuqiang mother-child cohort study"(TAWS) in China. Children were enrolled at birth between November 2016 and September 2020 and followed up at 1, 2, 3, 6, 8, 12, 18, and 24 months, as well as at ages 3 to 5 years.

View Article and Find Full Text PDF

Sulfate-reducing bacteria (SRB) are recognized as significant contributors to microbiologically induced corrosion (MIC). Developing effective, economical, sensitive, and specific detection methods for SRB is crucial for understanding microbial corrosion mechanisms and for early monitoring. In this study, a novel dual-mode DNA biosensor was developed, utilizing a nanozyme-based fuel cell to enable self-powered detection of the DsrA gene in SRB, while demonstrating excellent sensitivity, specificity, and reliability.

View Article and Find Full Text PDF

Humanity faces an ongoing battle at the microscopic level to identify, contain, and treat outbreaks of numerous pathogens each year. Global genomic surveillance is the first step in monitoring outbreaks, but high-throughput methods are expensive and time-consuming. To solve this problem, we designed and manufactured a resequencing microarray capable of identifying 35 viral pathogens, 21 pathogenic bacteria, 16 antibiotic resistance genes, and 6 controls.

View Article and Find Full Text PDF

Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system.

View Article and Find Full Text PDF