In brain activity mapping with optogenetics, patterned illumination is crucial for targeted neural stimulation. However, due to optical scattering in brain tissue, light-emitting implants are needed to bring patterned illumination to deep brain regions. A promising solution is silicon neural probes with integrated nanophotonic circuits that form tailored beam patterns without lenses.
View Article and Find Full Text PDFAlginate (Alg) is a versatile biopolymer for scaffold engineering and a bioink component widely used for direct cell printing. However, due to a lack of intrinsic cell-binding sites, Alg must be functionalized for cellular adhesion when used as a scaffold. Moreover, direct cell-laden ink 3D printing requires tedious disinfection procedures and cell viability is compromised by shear stress.
View Article and Find Full Text PDFA challenge in optical phased arrays (OPAs) is to achieve single-lobe emission using densely spaced emitters without incurring inter-waveguide optical crosstalk. Here, we propose to heuristically optimize the amplitude and phase of each grating antenna in an OPA to correct for optical non-idealities, including fabrication variations and inter-waveguide crosstalk. This method was applied to a silicon photonic integrated circuit with 1 mm-long gratings at 775 nm spacing for operation in a wavelength range of 1450-1650 nm.
View Article and Find Full Text PDFRefractory high-entropy alloys (RHEAs) are promising high-temperature structural materials. Their large compositional space poses great design challenges for phase control and high strength-ductility synergy. The present research pioneers using integrated high-throughput machine learning with Monte Carlo simulations supplemented by ab initio calculations to effectively navigate phase selection and mechanical property predictions, developing single-phase ordered B2 aluminum-enriched RHEAs (Al-RHEAs) demonstrating high strength and ductility.
View Article and Find Full Text PDF