Publications by authors named "J T Bergstralh"

Observations of oscillations of temperature and wind in planetary atmospheres provide a means of generalizing models for atmospheric dynamics in a diverse set of planets in the Solar System and elsewhere. An equatorial oscillation similar to one in the Earth's atmosphere has been discovered in Jupiter. Here we report the existence of similar oscillations in Saturn's atmosphere, from an analysis of over two decades of spatially resolved observations of its 7.

View Article and Find Full Text PDF

We review the operating principles of noncollinear acousto-optic tunable filters (AOTF's), emphasizing the use of two orthogonally polarized beams for narrow-band imaging. Spectral characterization and spectral broadening measurements of commercially available AOTF's agree with theoretical predictions and reveal difficulties associated with imaging noncollimated light. An AOTF imaging spectropolarimeter for ground-based astronomy that uses CCD's has been constructed at NASA Goddard Space Flight Center.

View Article and Find Full Text PDF

The spatial organization and time dependence of Jupiter's temperatures near 250-millibar pressure were measured through a jovian year by imaging thermal emission at 18 micrometers. The temperature field is influenced by seasonal radiative forcing, and its banded organization is closely correlated with the visible cloud field. Evidence was found for a quasi-periodic oscillation of temperatures in the Equatorial Zone, a correlation between tropospheric and stratospheric waves in the North Equatorial Belt, and slowly moving thermal features in the North and South Equatorial Belts.

View Article and Find Full Text PDF

The spatial organization and time dependence of Jupiter's stratospheric temperatures have been measured by observing thermal emission from the 7.8-micrometer CH(4) band. These temperatures, observed through the greater part of a Jovian year, exhibit the influence of seasonal radiative forcing.

View Article and Find Full Text PDF

The photopolarimeter instrument on Voyager 2 was used to obtain a map of Jupiter at an effective wavelength of 2400 angstroms. Analysis of a typical north-south swath used to make this map shows strong absorption at high latitudes by a molecular or particulate constituent in the Jovian atmosphere. At 65 degrees north latitude, the absorbing constituent extends to altitudes above the 50-millibar pressure level.

View Article and Find Full Text PDF