Understanding how bacteria adapt to different environmental conditions is crucial for advancing knowledge regarding pathogenic mechanisms that operate during infection as well as efforts to develop new therapeutic strategies to cure or prevent infections. Here, we investigated the transcriptional response of , the causative agent of gonorrhea, to L-lactate and glucose, two important carbon sources found in the host environment. Our study revealed extensive transcriptional changes that gonococci make in response to L-lactate, with 37% of the gonococcal transcriptome being regulated, compared to only 9% by glucose.
View Article and Find Full Text PDFUnlabelled: The continued emergence of strains that express resistance to multiple antibiotics, including the last drug for empiric monotherapy (ceftriaxone), necessitates the development of new treatment options to cure gonorrheal infections. Toward this goal, we recently reported that corallopyronin A (CorA), which targets the switch region of the β' subunit (RpoC) of bacterial DNA-dependent RNA polymerase (RNAP), has potent anti-gonococcal activity against a panel of multidrug-resistant clinical strains. Moreover, in that study, CorA could eliminate gonococcal infection of primary human epithelial cells and gonococci in a biofilm state.
View Article and Find Full Text PDFUnlabelled: The MtrCDE efflux pump of exports a wide range of antimicrobial compounds that the gonococcus encounters at mucosal surfaces during colonization and infection. Here, we evaluate the role of this efflux pump system in strain FA1090 in human male urethral infection with a Controlled Human Infection Model. Using the strategy of competitive multi-strain infection with wild-type FA1090 and an isogenic mutant strain that does not contain a functional MtrCDE pump, we found that the presence of the efflux pump during human experimental infection did not confer a competitive advantage.
View Article and Find Full Text PDF