Acrylonitrile (ACN), which is a widely used industrial chemical, induces cancers in multiple organs/tissues of rats by unresolved mechanisms. For this report, evidence for ACN-induced direct/indirect DNA damage and mutagenesis was investigated by assessing the ability of ACN, or its reactive metabolite, 2-cyanoethylene oxide (CEO), to bind to DNA in vitro, to form select DNA adducts [N7-(2'-oxoethyl)guanine, ,3-ethenoguanine, 1,-ethenodeoxyadenosine, and 3,-ethenodeoxycytidine] in vitro and/or in vivo, and to perturb the frequency and spectra of mutations in the hypoxanthine-guanine phosphoribosyltransferase () gene in rats exposed to ACN in drinking water. Adducts and frequencies and spectra of mutations were analyzed using published methods.
View Article and Find Full Text PDFAnticipating the need to evaluate and integrate scientific evidence to inform new risk assessments or to update existing risk assessments, the Formaldehyde Panel of the American Chemistry Council (ACC), in collaboration with the University of North Carolina, convened a workshop: "Understanding Potential Human Health Cancer Risk - From Data Integration to Risk Evaluation" in October 2017. Twenty-four (24) invited-experts participated with expertise in epidemiology, toxicology, science integration and risk evaluation. Including members of the organizing committee, there were 29 participants.
View Article and Find Full Text PDFAs a widespread industrial chemical, formaldehyde carcinogenicity has been highly controversial. Meanwhile, formaldehyde is an essential metabolite in all living cells. Previously, we have demonstrated exogenous formaldehyde causes DNA adducts in a nonlinear manner between 0.
View Article and Find Full Text PDFThe interpretation and significance of DNA adduct data, their causal relationship to mutations, and their role in risk assessment have been debated for many years. An extended effort to identify key questions and collect relevant data to address them was focused on the ubiquitous low MW N7-alkyl/hydroxyalkylguanine adducts. Several academic, governmental, and industrial laboratories collaborated to gather new data aimed at better understanding the role and potential impact of these adducts in quantifiable genotoxic events (gene mutations/micronucleus).
View Article and Find Full Text PDFA 24-month oral carcinogenicity study of permethrin was conducted by feeding male and female CD-1 mice diets containing concentrations of 0, 20, 500, and 2,000 ppm of permethrin (males) or 0, 20, 2,500, and 5,000 ppm of permethrin (females). After approximately two years on study, surviving mice were sacrificed for the evaluation of chronic toxicity and/or carcinogenicity. An expert panel of pathologists was convened as a Pathology Working Group (PWG) to review coded liver histology sections from male and female mice and to classify all liver neoplasms according to current nomenclature and diagnostic criteria guidelines.
View Article and Find Full Text PDF