Publications by authors named "J Sul"

The application of extracellular vesicles (EVs) as vehicles for anti-Parkinson's agents represents a significant advance, yet their clinical translation is hampered by challenges in efficient brain delivery and complex blood-brain barrier (BBB) targeting strategies. In this study, we engineered dopamine onto the surface of adipose-derived stem cell EVs (Dopa-EVs) utilizing a facile, two-step cross-linking approach. This engineering enhanced neuronal uptake of the EVs in primary neurons and neuroblastoma cells, a process shown to be competitively inhibited by dopamine pretreatment and dopamine receptor antibodies.

View Article and Find Full Text PDF

Recent advancements in exoskeleton technology, both passive and active, are driven by the need to enhance human capabilities across various industries as well as the need to provide increased safety for the human worker. This review paper examines the sensors, actuators, mechanisms, design, and applications of passive and active exoskeletons, providing an in-depth analysis of various exoskeleton technologies. The main scope of this paper is to examine the recent developments in the exoskeleton developments and their applications in different fields and identify research opportunities in this field.

View Article and Find Full Text PDF

Exoskeletons possess a high potential for assisting the human workforce while eliminating or reducing the risk of Work-Related Musculoskeletal Disorders (WMSDs). However, their usage in agricultural work, where there is a plethora of reported WMSD cases, seems limited. Since agricultural tasks are complex and performed in harsh environments, developing novel exoskeleton-based solutions could be challenging.

View Article and Find Full Text PDF

Effective intracellular delivery of therapeutic proteins can potentially treat a wide array of diseases. However, efficient delivery of functional proteins across the cell membrane remains challenging. Exosomes are nanosized vesicles naturally secreted by various types of cells and may serve as promising nanocarriers for therapeutic biomolecules.

View Article and Find Full Text PDF

Background And Aims: Water exchange (WE) and cap-assisted colonoscopy separately have been shown to reduce pain during insertion in unsedated patients. We hypothesized that compared with WE, WE cap-assisted colonoscopy (WECAC) could significantly lower real-time maximum insertion pain (RTMIP).

Methods: Veterans without escort were recruited, randomized, blinded, and examined at 3 U.

View Article and Find Full Text PDF