The neural-crest-derived sympathoadrenal cell lineage gives rise to sympathetic neurons and to endocrine chromaffin cells of the adrenal medulla. Both cell types express a largely overlapping set of genes, including those coding for the molecular machinery related to the synthesis and exocytotic release of catecholamines. During their early development, sympathetic neurons and chromaffin cells rely on a shared transcription factor network that controls the establishment of these common features.
View Article and Find Full Text PDFThe bHLH transcription factor Hand2 is essential for the acquisition and maintenance of noradrenergic properties of embryonic sympathetic neurons and controls neuroblast proliferation. Hand2 is also expressed in embryonic and postnatal parasympathetic ganglia and remains expressed in sympathetic neurons up to the adult stage. Here, we address its function in developing parasympathetic and adult sympathetic neurons.
View Article and Find Full Text PDFUnlabelled: The RNA binding protein Lin28B is expressed in developing tissues and sustains stem and progenitor cell identity as a negative regulator of the Let-7 family of microRNAs, which induces differentiation. Lin28B is activated in neuroblastoma (NB), a childhood tumor in sympathetic ganglia and adrenal medulla. Forced expression of Lin28B in embryonic mouse sympathoadrenal neuroblasts elicits postnatal NB formation.
View Article and Find Full Text PDFThe development of sympathetic neurons and chromaffin cells is differentially controlled at distinct stages by various extrinsic and intrinsic signals. Here we use conditional deletion of Dicer1 in neural crest cells and noradrenergic neuroblasts to identify stage specific functions in sympathoadrenal lineages. Conditional Dicer1 knockout in neural crest cells of Dicer1(Wnt1Cre) mice results in a rapid reduction in the size of developing sympathetic ganglia and adrenal medulla.
View Article and Find Full Text PDFDendrite development is controlled by the interplay of intrinsic and extrinsic signals affecting initiation, growth, and maintenance of complex dendrites. Bone morphogenetic proteins (BMPs) stimulate dendrite growth in cultures of sympathetic, cortical, and hippocampal neurons but it was unclear whether BMPs control dendrite morphology in vivo. Using a conditional knock-out strategy to eliminate Bmpr1a and Smad4 in immature noradrenergic sympathetic neurons we now show that dendrite length, complexity, and neuron cell body size are reduced in adult mice deficient of Bmpr1a.
View Article and Find Full Text PDF