Infrared (IR) spectroscopy is a commonly used and invaluable tool in studies of solvation phenomena in aqueous solutions. Concurrently, density functional theory calculations and ab initio molecular dynamics simulations deliver the solvation shell picture at the molecular detail level. The mentioned techniques allowed us to gain insights into the structure and energy of the hydrogen bonding network of water molecules around methylsulfonylmethane (MSM).
View Article and Find Full Text PDFIn this work, we investigated the influence of stabilizing (,,-trimethylglycine) and destabilizing (urea) osmolytes on the hydration spheres of biomacromolecules in folded forms (-1 peptide and hen egg white lysozyme─) and unfolded protein models (glycine─GLY and -methylglycine─NMG) by means of infrared spectroscopy. GLY and NMG were clearly limited as minimal models for unfolded proteins and should be treated with caution. We isolated the spectral share of water changed simultaneously by the biomacromolecule/model molecule and the osmolyte, which allowed us to provide unambiguous experimental arguments for the mechanism of stabilization/destabilization of proteins by osmolytes.
View Article and Find Full Text PDFThe biology and chemistry of proteins and peptides are inextricably linked with water as the solvent. The reason for the high stability of some proteins or uncontrolled aggregation of others may be hidden in the properties of their hydration water. In this study, we investigated the effect of stabilizing osmolyte-TMAO (trimethylamine -oxide) and destabilizing osmolyte-urea on hydration shells of two short peptides, NAGMA (-acetyl-glycine-methylamide) and diglycine, by means of FTIR spectroscopy and molecular dynamics simulations.
View Article and Find Full Text PDFThe enhancing effect on the water structure has been confirmed for most of the osmolytes exhibiting both stabilizing and destabilizing properties in regard to proteins. The presented work concerns osmolytes, which should be classified as "structure breaking" solutes: taurine and N,N,N-trimethyltaurine (TMT). Here, we combine FTIR spectroscopy, DSC calorimetry and DFT calculations to gain an insight into the interactions between osmolytes and two proteins: lysozyme and ubiquitin.
View Article and Find Full Text PDFInfrared (IR) spectroscopy is a widely used and invaluable tool in the studies of solvation phenomena in electrolyte solutions. Using state-of-the-art chemometric analysis of a spectral series measured in a concentration-dependent manner, the spectrum of the solute-affected solvent can be extracted, providing a detailed view of the structural and energetic states of the solvent molecules influenced by the solute. Concurrently, ab initio molecular dynamics (AIMD) simulations provide the solvation shell picture at an atomistic detail level and allow for a consistent decomposition of the theoretical IR spectrum in terms of distance-dependent contributions of the solvent molecules.
View Article and Find Full Text PDF