The high electrical conductivity and good chemical stability of MXenes offer hopes for their use in many applications, such as wearable electronics, energy storage, and electromagnetic interference shielding. While their optical, electronic, and electrochemical properties have been widely studied, information on the thermal properties of MXenes is scarce. In this study, we investigate the heat transport properties of TiCT MXene single flakes using scanning thermal microscopy and find exceptionally low anisotropic thermal conductivities within the TiCT flakes, leading to an effective thermal conductivity of 0.
View Article and Find Full Text PDFElectronic devices continue to shrink in size while increasing in performance, making excess heat dissipation challenging. Traditional thermal interface materials (TIMs) such as thermal grease and pads face limitations in thermal conductivity and stability, particularly as devices scale down. Carbon nanotubes (CNTs) have emerged as promising candidates for TIMs because of their exceptional thermal conductivity and mechanical properties.
View Article and Find Full Text PDFGraphene is atomically thin, possesses excellent thermal conductivity, and is able to withstand high current densities, making it attractive for many nanoscale applications such as field-effect transistors, interconnects, and thermal management layers. Enabling integration of graphene into such devices requires nanostructuring, which can have a drastic impact on the self-heating properties, in particular at high current densities. Here, we use a combination of scanning thermal microscopy, finite element thermal analysis, and scanning transmission electron microscopy techniques to observe prototype graphene devices in operation and gain a deeper understanding of the role of geometry and interfaces during high current density operation.
View Article and Find Full Text PDFNanomechanical measurements of minimally twisted van der Waals materials remained elusive despite their fundamental importance for device realisation. Here, we use Ultrasonic Force Microscopy (UFM) to locally quantify the variation of out-of-plane Young's modulus in minimally twisted double bilayer graphene (TDBG). We reveal a softening of the Young's modulus by 7% and 17% along single and double domain walls, respectively.
View Article and Find Full Text PDFLayered crystals are known to be good candidates for bulk thermoelectric applications as they open new ways to realise highly efficient devices. Two dimensional materials, isolated from layered materials, and their stacking into heterostructures have attracted intense research attention for nanoscale applications due to their high Seebeck coefficient and possibilities to engineer their thermoelectric properties. However, integration to thermoelectric devices is problematic due to their usually high thermal conductivities.
View Article and Find Full Text PDF