Publications by authors named "J Sourati"

Artificial intelligence (AI) models trained on published scientific findings have been used to invent valuable materials and targeted therapies, but they typically ignore the human scientists who continually alter the landscape of discovery. Here we show that incorporating the distribution of human expertise by training unsupervised models on simulated inferences that are cognitively accessible to experts dramatically improves (by up to 400%) AI prediction of future discoveries beyond models focused on research content alone, especially when relevant literature is sparse. These models succeed by predicting human predictions and the scientists who will make them.

View Article and Find Full Text PDF

Deep convolutional neural networks (CNN) have recently achieved superior performance at the task of medical image segmentation compared to classic models. However, training a generalizable CNN requires a large amount of training data, which is difficult, expensive, and time-consuming to obtain in medical settings. Active Learning (AL) algorithms can facilitate training CNN models by proposing a small number of the most informative data samples to be annotated to achieve a rapid increase in performance.

View Article and Find Full Text PDF

Deep learning with convolutional neural networks (CNN) has achieved unprecedented success in segmentation, however it requires large training data, which is expensive to obtain. Active Learning (AL) frameworks can facilitate major improvements in CNN performance with intelligent selection of minimal data to be labeled. This paper proposes a novel diversified AL based on Fisher information (FI) for the first time for CNNs, where gradient computations from backpropagation are used for efficient computation of FI on the large CNN parameter space.

View Article and Find Full Text PDF

A class of brain computer interfaces (BCIs) employs noninvasive recordings of electroencephalography (EEG) signals to enable users with severe speech and motor impairments to interact with their environment and social network. For example, EEG based BCIs for typing popularly utilize event related potentials (ERPs) for inference. Presentation paradigm design in current ERP-based letter by letter typing BCIs typically query the user with an arbitrary subset characters.

View Article and Find Full Text PDF

The task of labeling samples is demanding and expensive. Active learning aims to generate the smallest possible training data set that results in a classifier with high performance in the test phase. It usually consists of two steps of selecting a set of queries and requesting their labels.

View Article and Find Full Text PDF