Tissue-resident and recruited immune cells are essential mediators of natural and therapy-induced immunosurveillance of liver neoplasia. This idea has been recently reinforced by the clinical approval of immune checkpoint inhibitors for the immunotherapy of hepatocellular carcinoma and cholangiocarcinoma. Such research progress relies on the in-depth characterization of the immune populations that are present in pre-neoplastic and neoplastic hepatic lesions.
View Article and Find Full Text PDFDiethylnitrosamine (DEN) is a chemical hepatocarcinogenic agent that triggers a large array of oncogenic mutations after a single injection. Initiated hepatocytes subsequently undergo clonal expansion within a proliferative environment, rendering the DEN model a comprehensive carcinogen. In rodent studies, DEN finds extensive utility in experimental liver cancer research, mimicking several aspects of human hepatocellular carcinoma (HCC), including angiogenesis, metabolic reprogramming, immune exhaustion, and the ability to metastasize.
View Article and Find Full Text PDFRegulation of alternative splicing is one of the most efficient mechanisms to enlarge the proteomic diversity in eukaryotic organisms. Many viruses hijack the splicing machinery following infection to accomplish their replication cycle. Regarding the HBV, numerous reports have described alternative splicing events of the long viral transcript (pregenomic RNA), which also acts as a template for viral genome replication.
View Article and Find Full Text PDF