While the critical role of NKX2-1 and its transcriptional targets in lung morphogenesis and pulmonary epithelial cell differentiation is increasingly known, mechanisms by which chromatin accessibility alters the epigenetic landscape and how NKX2-1 interacts with other co-activators required for alveolar epithelial cell differentiation and function are not well understood. Combined deletion of the histone methyl transferases Prdm3 and Prdm16 in early lung endoderm causes perinatal lethality due to respiratory failure from loss of AT2 cells and the accumulation of partially differentiated AT1 cells. Combination of single-cell RNA-seq, bulk ATAC-seq, and CUT&RUN data demonstrate that PRDM3 and PRDM16 regulate chromatin accessibility at NKX2-1 transcriptional targets critical for perinatal AT2 cell differentiation and surfactant homeostasis.
View Article and Find Full Text PDFObjective: Human skin is the first line of defence from environmental factors such as solar radiation and is susceptible to premature ageing, including a disruption in epidermal differentiation and homeostasis. We evaluated the impact of a Galactomyces Ferment Filtrate (GFF) on epidermal differentiation and response to oxidative stress.
Methods: We used transcriptomics, both spatial and traditional, to assess the impact of GFF on epidermal biology and homeostasis in keratinocytes (primary or immortalized) and in ex vivo skin explant tissue.
Purpose: Coronary artery bypass grafting (CABG) on cardiopulmonary bypass (CPB) is associated with myocardial ischemia-reperfusion injury (IRI), which may limit the benefit of the surgery. Both experimental and clinical studies suggest that Intralipid, a lipid emulsion commonly used for parenteral nutrition, can limit myocardial IRI. We therefore aimed to investigate whether Intralipid administered at reperfusion can reduce myocardial IRI in patients undergoing CABG on CPB.
View Article and Find Full Text PDFDifferential chromatin accessibility accompanies and mediates transcriptional control of diverse cell fates and their differentiation during embryogenesis. While the critical role of NKX2-1 and its transcriptional targets in lung morphogenesis and pulmonary epithelial cell differentiation is increasingly known, mechanisms by which chromatin accessibility alters the epigenetic landscape and how NKX2-1 interacts with other co-activators required for alveolar epithelial cell differentiation and function are not well understood. Here, we demonstrate that the paired domain zinc finger transcriptional regulators PRDM3 and PRDM16 regulate chromatin accessibility to mediate cell differentiation decisions during lung morphogenesis.
View Article and Find Full Text PDF