Forensic Sci Int
November 2024
The successful application of Forensic Investigative Genetic Genealogy (FIGG) to the identification of unidentified human remains and perpetrators of serious crime has led to a growing interest in its use internationally, including Australia. Routinely, FIGG has relied on the generation of high-density single nucleotide polymorphism (SNP) profiles from forensic samples using whole genome array (WGA) (∼650,000 or more SNPs) or whole genome sequencing (WGS) (millions of SNPs) for DNA segment-based comparisons in commercially available genealogy databases. To date, this approach has required DNA of a quality and quantity that is often not compatible with forensic samples.
View Article and Find Full Text PDFForensic Investigative Genetic Genealogy, a recent sub discipline of forensic genomics, leverages the high throughput and sensitivity of detection of next generation sequencing and established genetic and genealogical approaches to support the identification of human remains from missing persons investigations and investigative lead generation in violent crimes. To facilitate forensic DNA evidence analysis, the ForenSeq® Kintelligence multiplex, consisting of 10,230 SNPs, was developed. Design of the ForenSeq Kintelligence Kit, the MiSeq FGx® Sequencing System and the ForenSeq Universal Analysis Software is described.
View Article and Find Full Text PDFFor human identification purposes, forensic genetics has primarily relied upon a core set of autosomal (and to a lesser extent Y chromosome) short tandem repeat (STR) markers that are enriched by amplification using the polymerase chain reaction (PCR) that are subsequently separated and detected using capillary electrophoresis (CE). While STR typing conducted in this manner is well-developed and robust, advances in molecular biology that have occurred over the last 15 years, in particular massively parallel sequencing (MPS) [1-7], offer certain advantages as compared to CE-based typing. First and foremost is the high throughput capacity of MPS.
View Article and Find Full Text PDFForensic Sci Int Genet
November 2022
Forensic genetic genealogy (FGG) has primarily relied upon dense single nucleotide polymorphism (SNP) profiles from forensic samples or unidentified human remains queried against online genealogy database(s) of known profiles generated with SNP microarrays or from whole genome sequencing (WGS). In these queries, SNPs are compared to database samples by locating contiguous stretches of shared SNP alleles that allow for detection of genomic segments that are identical by descent (IBD) among biological relatives (kinship). This segment-based approach, while robust for detecting distant relationships, generally requires DNA quantity and/or quality that are sometimes not available in forensic casework samples.
View Article and Find Full Text PDFCilia are motile and sensory organelles with critical roles in physiology. Ciliary defects can cause numerous human disease symptoms including polycystic kidneys, hydrocephalus, and retinal degeneration. Despite the importance of these organelles, their assembly and function is not fully understood.
View Article and Find Full Text PDF