Publications by authors named "J Smolikova"

The cell type-specific expression of key transcription factors is central to development and disease. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene.

View Article and Find Full Text PDF

The cell type-specific expression of key transcription factors is central to development. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian gene.

View Article and Find Full Text PDF

A group of seven bacterial strains producing blue-purple pigmented colonies on R2A agar was isolated from freshwater samples collected in a deglaciated part of James Ross Island and Eagle Island, Antarctica, from 2017-2019. The isolates were psychrophilic, oligotrophic, resistant to chloramphenicol, and exhibited strong hydrolytic activities. To clarify the taxonomic position of these isolates, a polyphasic taxonomic approach was applied based on sequencing of the 16S rRNA, B and A genes, whole-genome sequencing, rep-PCR, MALDI-TOF MS, chemotaxonomy analyses and biotyping.

View Article and Find Full Text PDF

The incorporation of clickable noncanonical amino acids (ncAAs) has proven to an invaluable tool in chemical biology and protein science research. Nevertheless, the number of examples in which the method is used for preparative purposes is extremely limited. We report the synthesis of an active enzyme by quantitative, Cu(I)-catalyzed ligation of two inactive protein halves, expressed and equipped with an azide and alkyne moiety, respectively, through ncAA incorporation.

View Article and Find Full Text PDF

Lens induction is a classical developmental model allowing investigation of cell specification, spatiotemporal control of gene expression, as well as how transcription factors are integrated into highly complex gene regulatory networks (GRNs). Pax6 represents a key node in the gene regulatory network governing mammalian lens induction. Meis1 and Meis2 homeoproteins are considered as essential upstream regulators of Pax6 during lens morphogenesis based on their interaction with the ectoderm enhancer (EE) located upstream of Pax6 transcription start site.

View Article and Find Full Text PDF