Publications by authors named "J Slanina"

The phenolic compounds of methanolic extracts of and were identified by liquid chromatography tandem mass spectrometry. Carnosic acid and its metabolite carnosol were the most abundant terpene phenolic compounds of , while they were completely absent in . The main terpene phenolic constituent of was 12--methylcarnosic acid and its mass/mass fragmentation pathway was explained.

View Article and Find Full Text PDF

Sanguinarine is a benzo[c]phenanthridine alkaloid with interesting cytotoxic properties, such as induction of oxidative DNA damage and very rapid apoptosis, which is not mediated by p53-dependent signaling. It has been previously documented that sanguinarine is reduced with NADH even in absence of any enzymes while being converted to its dihydro form. We found that the dark blue fluorescent species, observed during sanguinarine reduction with NADH and misinterpreted by Matkar et al.

View Article and Find Full Text PDF

The aim of the present study was to determine the structural requirements for dibenzocyclooctadiene lignans essential for P-glycoprotein inhibition. Altogether 15 structurally related lignans isolated from Schisandra chinensis or prepared by modification of their backbone were investigated, including three pairs of enantiomers. P-Glycoprotein inhibition was quantified using a doxorubicin accumulation assay in human promyelotic leukemia HL60/MDR cells overexpressing P-glycoprotein.

View Article and Find Full Text PDF

Using exhaustive chromatographic separation we have isolated (-)-tigloyl-deangeloyl-gomisin F as a novel dibenzocyclooctadiene lignan from schisandra chinensis. With the help of HPLC, we further isolated (+)-schisandrin, (+)-deoxyschisandrin, (+)-γ-schisandrin, (-)-gomisin J, (+)-gomisin A, (-)-gomisin N, (-)-tigloyl-gomisin P, (-)-wuweizisu C, (-)-gomisin D, rubrisandrin A, (-)-gomisin G, (+)-gomisin K (3) and (-)-schisantherin C. A full NMR description of (-)-schisantherin C was carried out with the aim to confirm previous reports of its structure.

View Article and Find Full Text PDF

The in vitro antiradical activity of Schisandra chinensis lignans was investigated using DPPH, ABTS+, Fenton reaction inhibition and tyrosine-nitration inhibition assays, as were the in vivo antidiabetic activities of selected lignans in an animal model of alloxan-induced diabetes. Different degrees of antiradical activity were found, depending upon the structural parameters of the tested compounds. Unfortunately, the compounds showed no antidiabetic activity in concentration range tested.

View Article and Find Full Text PDF