Cellular mosaicism due to monoallelic autosomal expression (MAE), with cell selection during development, is becoming increasingly recognized as prevalent in mammals, leading to interest in understanding its extent and mechanism(s). We report here use of clonal cell lines derived from the CNS of adult female [Formula: see text] hybrid (C57BL/6 X JF1) mice to characterize MAE as neural stem cells (s) differentiate to astrocyte-like cells (s). We found that different subsets of genes show MAE in the two populations of cells; in each case, there is strong enrichment for genes specific to the respective developmental state.
View Article and Find Full Text PDFMonoallelic expression is an integral component of regulation of a number of essential genes and gene families. To probe for allele-specific expression in cells of CNS origin, we used next-generation sequencing (RNA-seq) to analyze four clonal neural stem cell (NSC) lines derived from Mus musculus C57BL/6 (B6)×Mus musculus molossinus (JF1) adult female mice. We established a JF1 cSNP library, then ascertained transcriptome-wide expression from B6 vs.
View Article and Find Full Text PDFAs a first step towards discovery of genes expressed from only one allele in the CNS, we used a tiling array assay for DNA sequences that are both methylated and unmethylated (the MAUD assay). We analyzed regulatory regions of the entire mouse brain transcriptome, and found that approximately 10% of the genes assayed showed dual DNA methylation patterns. They include a large subset of genes that display marks of both active and silent, i.
View Article and Find Full Text PDFThe inheritance pattern of a number of major genetic disorders suggests the possible involvement of genes that are expressed from one allele and silent on the other, but such genes are difficult to detect. Since DNA methylation in regulatory regions is often a mark of gene silencing, we modified existing microarray-based assays to detect both methylated and unmethylated DNA sequences in the same sample, a variation we term the MAUD assay. We probed a 65 Mb region of mouse Chr 7 for gene-associated sequences that show two distinct DNA methylation patterns in the mouse CNS.
View Article and Find Full Text PDF