Grazing incidence x-ray diffraction (GIXD) is a frequently used tool for the crystallographic characterization of thin films in terms of polymorph identification and determination of the crystallographic lattice parameters. Even full structure solutions are possible. To obtain highly accurate diffraction patterns, the thin film sample has to be aligned carefully with the center of the goniometer, which allows a defined incidence of the primary x-ray beam relative to the sample surface.
View Article and Find Full Text PDFWhile the crystal structure of the polymorph phase can be studied in three dimensions conveniently by X-ray methods like grazing-incidence X-ray diffraction (GIXD), the first monolayer is only accessible by surface-sensitive methods that allow the determination of a two-dimensional lattice. Here, GIXD measurements with sample rotation are compared with distortion-corrected low-energy electron diffraction (LEED) experiments on conjugated molecules: 3,4;9,10-perylenetetracarboxylic dianhydride (PTCDA), 6,13-pentacenequinone (P2O), 1,2;8,9-dibenzopentacene (trans-DBPen) and dicyanovinyl-quaterthiophene (DCV4T-Et2) grown by physical vapor deposition on Ag(111) and Cu(111) single crystals. For these molecular crystals, which exhibit different crystallographic lattices and crystal orientations as well as epitaxial properties, the geometric parameters of the three-dimensional lattice are compared with the corresponding geometry of the first monolayer.
View Article and Find Full Text PDFThe epitaxial growth of molecular crystals at single-crystalline surfaces is often strongly related to the first monolayer at the substrate surface. The present work presents a theoretical approach to compare three-dimensional lattices of epitaxially grown crystals with two-dimensional lattices of the molecules formed within the first monolayer. Real-space and reciprocal-space representations are considered.
View Article and Find Full Text PDFThe molecule 2-decyl-7-phenyl-[1]benzothieno[3,2-][1]benzothiophene is an organic semiconductor, with outstanding properties in terms of molecular packing and its use in organic electronics. The asymmetric shape of the molecule causes a double layer crystal structure at room temperature. In this work we report its thin film growth by physical vapor deposition starting from the monolayer regime up to thick films.
View Article and Find Full Text PDFGrazing-incidence X-ray diffraction (GIXD) is a widely used technique for the crystallographic characterization of thin films. The identification of a specific phase or the discovery of an unknown polymorph always requires indexing of the associated diffraction pattern. However, despite the importance of this procedure, only a few approaches have been developed so far.
View Article and Find Full Text PDF