Aedes aegypti vectors the pathogens that cause dengue, yellow fever, Zika virus, and chikungunya and is a serious threat to public health in tropical regions. Decades of work has illuminated many aspects of Ae. aegypti's biology and global population structure and has identified insecticide resistance genes; however, the size and repetitive nature of the Ae.
View Article and Find Full Text PDFThe presence of a fluoroquinolone base veterinary antibacterial drug enrofloxacin in aqueous media poses a major threat due to its ecotoxicity on aquatic microbiota. Hence, for the first time, an attempt was made to remove enrofloxacin (ENX) from its aqueous solution by employing micellar-enhanced ultrafiltration (MEUF) where cetylpyridinium bromide (CPB), a cationic surfactant was used for micellization. Response surface methodology (RSM) with central composite design (CCD) approach was applied to design the experiment, and to optimize the process parameters, namely, ENX concentration (3-15 mg/L), transmembrane pressure (2-6 kg/cm), recirculation flow rate (5.
View Article and Find Full Text PDFThe current investigation deals with how chemically activated carbon derived from industrial paper sludge (ACPS) performs on sorptive removal of enrofloxacin (ENF), an antibacterial drug from its water solution. Thermogravimetric (TGA) and proximate analysis of raw paper sludge (RPS) were conducted. ACPS was characterized with proximate analysis, XRD, FT-IR, SEM and BET.
View Article and Find Full Text PDFThe primary focus of this work was to recover lignin and investigate the structural changes in sugarcane bagasse after pretreatment with ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]oAc). 90% lignin recovery was achieved while bagasse was treated with [EMIM]oAc at 140 °C, 120 min reaction time and 1:20 bagasse to the ionic liquid ratio (w/w). The impact of ionic liquid pretreatment on bagasse was confirmed by qualitative analysis of untreated and pretreated bagasse.
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2015
Coagulation-nanofiltration based integrated treatment scheme was employed in the present study to maximize the removal of toxic Cr(VI) species from tannery effluents. The coagulation pretreatment step using aluminium sulphate hexadecahydrate (alum) was optimized by response surface methodology (RSM). A nanofiltration unit was integrated with this coagulation pre-treatment unit and the resulting flux decline and permeate quality were investigated.
View Article and Find Full Text PDF