Objective: To investigate the molecular mechanism of lipid metabolism disorder in mouse spleen tissues due to high-altitude hypoxia.
Methods: Ten C57BL/6 male mice were randomly divided into normoxia group (maintained at an altitude of 400 m) and high-altitude hypoxia group (maintained at 4200 m) for 30 days (=5). Lipidomics and metabolomics analyses of the spleen tissue of the mice were conducted using liquid chromatography-mass spectrometry (LC-MS) to identify the differential metabolites, which were further analyzed by KEGG enrichment and pathway analyses, and the differential genes were screened through transcriptome sequencing.
Plantar shear stress may have an important role in the formation of a Diabetic Foot Ulcer, but its measurement is regarded as challenging and has limited research. This paper highlights the importance of anatomical specific shear sensor calibration and presents a feasibility study of a novel shear sensing system which has measured in-shoe shear stress from gait activity on both healthy and diabetic subjects. The sensing insole was based on a strain gauge array embedded in a silicone insole backed with a commercial normal pressure sensor.
View Article and Find Full Text PDFBackground: The global number of people with diabetes is estimated to reach 643 million by 2030 of whom 19-34% will present with diabetic foot ulceration. Insoles which offload high-risk ulcerative regions on the foot, by removing insole material, are the main contemporary conservative treatment to maintain mobility and reduce the likelihood of ulceration. However, their effect on the rest of the foot and relationship with key gait propulsive and balance kinematics and kinetics has not been well researched.
View Article and Find Full Text PDFObjective: Infection and nonunion are the two most challenging issues for high-energy fractures. This study aimed to explore the clinical effect of benign inflammation-cultivated bone growth activity in the treatment of closed/small-sized open and high-energy fractures.
Methods: This study is a case series of closed/small-sized open and high-energy fractures of the lower limbs treated at our hospital from April 2009 to February 2017.
Background: Golden2-Like (GLK) transcription factors are a type of transcriptional regulator in plants. They play a pivotal role in the plant physiological activity process and abiotic stress response.
Methods: In this study, the potential function of family genes in was studied based on genomic identification, phylogenetic analysis, chromosome mapping and cis-regulatory elements prediction.