Metabolomics research provides a clearer understanding of an organism's metabolic state and enables a more accurate representation of its functional performance. This study aimed to investigate changes in the metabolome of lung tissues resulting from prenatal exposure to polystyrene microplastics (PS-MPs) and to understand the underlying mechanisms of lung damage in rat offspring. We conducted metabolomic analyses of lung tissue from seven-day-old rat pups exposed to prenatal PS-MPs.
View Article and Find Full Text PDFNew treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy.
View Article and Find Full Text PDFAbscisic acid (ABA) regulates plant stress adaptation, growth and reproduction. Despite extensive ABA-Ca signalling links, imaging ABA-induced increases in Ca concentration has been challenging, except in guard cells. Here we visualize ABA-triggered [Ca] dynamics in diverse organs and cell types of Arabidopsis thaliana using a genetically encoded Ca ratiometric sensor with a low-nanomolar Ca-binding affinity and a large dynamic range.
View Article and Find Full Text PDFJ Small Anim Pract
October 2024
Objectives: To report clinical findings, management strategies and outcomes in pet rabbits with maxillofacial fractures.
Materials And Methods: Medical records of pet rabbits with confirmed maxillofacial fractures from three exotic animal veterinary services between 2008 and 2022 were reviewed.
Results: Forty-five fractured maxillofacial bones were reported in 27 rabbits, including mandibular symphyseal separation in 13 rabbits.
The issue of environmental nanoplastic (NPl) particle and microplastic (MPl) particle pollution is becoming increasingly severe, significantly impacting ecosystems and biological health. Research shows that NPl/MPl can penetrate the placental barrier and enter the fetus, leading to transgenerational effects. This review integrates the existing literature on the effects of prenatal NPl/MPl exposure on mammalian offspring, focusing particularly on its negative impacts on the central nervous system, liver, intestinal health, reproductive function, and skeletal muscles.
View Article and Find Full Text PDF