Vaccination with Ad26.RSV.preF, an Adenoviral serotype 26 vector encoding RSV F protein stabilized in its prefusion conformation, has previously shown to be immunogenic and protective in RSV seropositive adults and immunogenic in seropositive infants.
View Article and Find Full Text PDFNewly approved subunit and mRNA vaccines for respiratory syncytial virus (RSV) demonstrate effectiveness in preventing severe disease, with protection exceeding 80% primarily through the generation of antibodies. An alternative vaccine platform called self-amplifying RNA (saRNA) holds promise in eliciting humoral and cellular immune responses. We evaluate the immunogenicity of a lipid nanoparticle (LNP)-formulated saRNA vaccine called SMARRT.
View Article and Find Full Text PDFAd26.COV2.S vaccination can lead to vaccine-induced immune thrombotic thrombocytopenia (VITT), a rare but severe adverse effect, characterized by thrombocytopenia and thrombosis.
View Article and Find Full Text PDFNon-replicating adenovirus-based vectors have been broadly used for the development of prophylactic vaccines in humans and are licensed for COVID-19 and Ebola virus disease prevention. Adenovirus-based vectored vaccines encode for one or more disease specific transgenes with the aim to induce protective immunity against the target disease. The magnitude and duration of transgene expression of adenovirus 5- based vectors (human type C) in the host are key factors influencing antigen presentation and adaptive immune responses.
View Article and Find Full Text PDFVaccine-induced immune thrombotic thrombocytopenia (VITT) is a very rare but serious adverse reaction that can occur after Ad26.COV2.S vaccination in humans, leading to thrombosis at unusual anatomic sites.
View Article and Find Full Text PDF