Publications by authors named "J Sebastia"

IRAK1 is involved in the regulation of type I IFN production downstream of TLR3. Previous work indicated that IRAK1 negatively regulates TRIF-mediated activation of IRF3 and IRF7. We report that IRAK1 limits the activation of the TLR3-NF-κB pathway.

View Article and Find Full Text PDF

X-linked inhibitor of apoptosis protein (XIAP) is a potent inhibitor of caspases 3, 7 and 9, and mitochondrial Smac (second mitochondria-derived activator of caspase) release during apoptosis inhibits the activity of XIAP. In this study we show that cytosolic XIAP also feeds back to mitochondria to impair Smac release. We constructed a fluorescent XIAP-fusion protein by labelling NH(2)- and COOH-termini with Cerulean fluorescent protein (C-XIAP-C).

View Article and Find Full Text PDF

Following the apoptotic permeabilization of the outer mitochondrial membrane, the inter-membrane space protein second mitochondria-derived activator of caspases (Smac) is released into the cytosol. Smac efficiently promotes apoptosis by antagonizing x-linked inhibitor of apoptosis protein (XIAP), an inhibitor of caspases-9, -3, and -7, via a short NH(2)-terminal inhibitor of apoptosis protein (IAP) binding motif (AVPI). Native Smac dimerizes to form a highly stable and inflexible elongated arch, however, a functional role for this outstretched structure so far remained unknown.

View Article and Find Full Text PDF

Cells can adapt to hypoxia through the activation of hypoxia-inducible factor-1 (HIF-1), which in turn regulates the expression of hypoxia-responsive genes. Defects in hypoxic signaling have been suggested to underlie the degeneration of motoneurons in amyotrophic lateral sclerosis (ALS). We have recently identified mutations in the hypoxia-responsive gene, angiogenin (ANG), in ALS patients, and have shown that ANG is constitutively expressed in motoneurons.

View Article and Find Full Text PDF