ACS Appl Mater Interfaces
November 2021
The lack of a sizeable band gap has so far prevented graphene from building effective electronic and optoelectronic devices despite its numerous exceptional properties. Intensive theoretical research reveals that a band gap larger than 1 eV can only be achieved in sub-3 nm wide graphene nanoribbons (GNRs), but real fabrication of such ultranarrow GNRs still remains a critical challenge. Herein, we demonstrate an approach for the synthesis of ultranarrow and photoluminescent semiconducting GNRs by longitudinally unzipping single-walled carbon nanotubes.
View Article and Find Full Text PDFHere, we present theory and measurements for a bridge rectifier formed from arrays of graphene self-switching diodes (GSSDs). Despite graphene's lack of a bandgap and high carrier concentration causing a reduced rectification ratio, the extremely high carrier mobility will allow GSSDs to work at frequencies well into the THz region. Compared with a single SSD array, the bridge rectifier structure allows for full-wave rectification of an AC signal.
View Article and Find Full Text PDFWe investigate the modes of coupled waveguides in a hexagonal photonic crystal. We find that for a substantial parameter range the coupled waveguide modes have dispersion relations exhibiting multiple intersections, which we explain both intuitively and using a rigorous tight-binding argument.
View Article and Find Full Text PDF