Cancer neuroscience is a rapidly growing multidisciplinary field that conceptualizes tumors as tissues fully integrated into the nervous system. Recognizing the complexity and challenges in this field is of fundamental importance to achieving the goal of translational impact for cancer patients. Our commentary highlights key scientific priorities, optimal training settings, and roadblocks to translating scientific findings to the clinic in this emerging field, aiming to formulate a transformative and cohesive path forward.
View Article and Find Full Text PDFNeuronal activity promotes the proliferation of healthy oligodendrocyte precursor cells (OPC) and their malignant counterparts, gliomas. Many gliomas arise from and closely resemble oligodendroglial lineage precursors, including diffuse midline glioma (DMG), a cancer affecting midline structures such as the thalamus, brainstem and spinal cord. In DMG, glutamatergic and GABAergic neuronal activity promotes progression through both paracrine signaling and through bona-fide neuron-to-glioma synapses.
View Article and Find Full Text PDFHeterotrimeric extracellular matrix proteins laminins are mostly deposited at basal membranes and are important in repair and neoplasia. Here, we localize laminin beta 2 () at the sites of blood-brain barrier (BBB). Microvasculature (MV) of normal brain is endowed with complete coverage.
View Article and Find Full Text PDFThienamycin is a carbapenem antibiotic with potent activity against gram-negative and gram-positive bacteria. Due to its promising activity but lack of chemical stability, thienamycin serves as inspiration for new synthetic antibiotic scaffolds. In this study, we report a nine-step enantioselective formal synthesis of thienamycin.
View Article and Find Full Text PDFBackground: Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-β). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-β-mediated immune suppression in the TME.
Methods: We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-β, which programs tumor-specific T cells to convert TGF-β from an immunosuppressant to an immunostimulant.