Astrocytes form an intricate partnership with neural circuits to influence numerous cellular and synaptic processes. One prominent organizational feature of astrocytes is the "tiling" of the brain with non-overlapping territories. There are some documented species and brain region-specific astrocyte specializations, but the extent of astrocyte diversity and circuit specificity are still unknown.
View Article and Find Full Text PDFThere is a growing effort to image single neurons in vivo, and observe their individual contribution to the brain's functional organization. This effort generally relies on two-photon imaging to explore the structure and activity of cortical columns extending beneath the brain's surface. The need to protect living tissue, however, demands the introduction of coverslips and similar objects that can modify the optics of the imaging beam.
View Article and Find Full Text PDFThe brain uses attention and expectation as flexible devices for optimizing behavioral responses associated with expected but unpredictably timed events. The neural bases of attention and expectation are thought to engage higher cognitive loci; however, their influence at the level of primary visual cortex (V1) remains unknown. Here, we asked whether single-neuron responses in monkey V1 were influenced by an attention task of unpredictable duration.
View Article and Find Full Text PDFAstrocytes are a multifunctional cell type in the nervous system that can influence neurons and synapses in numerous ways. Astrocytes have been suggested to play important roles in synapse formation during development, as well as in multiple forms of synaptic plasticity in the developing and adult brain. Astrocytes respond to nearby neural activity with elevations in cytosolic calcium concentration, and in sensory cortex these calcium responses have been shown to be topographically aligned to neuronal sensory maps.
View Article and Find Full Text PDF