Publications by authors named "J Schreiner"

Inflammation plays a critical role in the pathophysiology of many diseases, and dysregulation of the involved signaling cascades often culminates in uncontrollable disease progression and, ultimately, chronic manifestation. Addressing these disorders requires balancing inflammation control while preserving essential immune functions. Cyclodextrins (CDs), particularly β-CD, have gained attention as biocompatible biomaterials with intrinsic anti-inflammatory properties, and chemical modification of their backbone offers a promising strategy to enhance their physicochemical properties, adaptability, and therapeutic potential.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH) is a leading cause of chronic liver disease with few therapeutic options. To narrow the translational gap in the development of pharmacological MASH treatments, a 3D liver model from primary human hepatocytes and non-parenchymal cells derived from patients with histologically confirmed MASH was established. The model closely mirrors disease-relevant endpoints, such as steatosis, inflammation and fibrosis, and multi-omics analyses show excellent alignment with biopsy data from 306 MASH patients and 77 controls.

View Article and Find Full Text PDF
Article Synopsis
  • The XENONnT dark matter experiment successfully measured nuclear recoils from solar ^{8}B neutrinos, marking a significant advancement in neutrino detection technology.
  • Using a two-phase time projection chamber with a 5.9 t liquid xenon target, the experiment produced 37 observed events, which surpassed the expected background events, indicating a notable signal.
  • The results provide a measured solar neutrino flux consistent with previous studies and confirm the neutrino cross section predictions aligned with the Standard Model, showcasing the effectiveness of dark matter detectors in neutrino research.
View Article and Find Full Text PDF

For clinical translation of oral nanocarriers, simulation of the intestinal microenvironment during testing is crucial to evaluate interactions with the intestinal mucosa. However, studies are often conducted using simplistic cell culture models, overlooking key physiological factors, and potentially leading to an overestimation of nanocarrier permeation. In this study, we systematically investigate different tissue models of the human intestine under static cultivation and dynamic flow conditions and analyze the impact of altered tissue characteristics on nanocarrier permeation.

View Article and Find Full Text PDF
Article Synopsis
  • A search for dark matter candidates in the mass range of 65 to 1021 keV was conducted using data from the GERDA experiment, focusing on energy depositions without detecting any significant signals above background noise.
  • The study established stringent exclusion limits on dark photon and axion-like particle interactions with electrons, with specific constraints noted at a 150 keV mass level.
  • Additional investigations into the decay rates of nucleons and electrons yielded lower lifetime limits for neutron, proton, and electron decay events at a 90% confidence interval.
View Article and Find Full Text PDF