A real-space technique for finding structural information in atom probe tomographs, spatial distribution maps (SDM), is described. The mechanics of the technique are explained, and it is then applied to some test cases. Many applications of SDM in atom probe tomography are illustrated with examples including finding crystal lattices, correcting lattice strains in reconstructed images, quantifying trajectory aberrations, quantifying spatial resolution, quantifying chemical ordering, dark-field imaging, determining orientation relationships, extracting radial distribution functions, and measuring ion detection efficiency.
View Article and Find Full Text PDFScanning probe microscopes derived from the scanning tunnelling microscope (STM) offer new ways to examine surfaces of biological samples and technologically important materials. The surfaces of conductive and semiconductive samples can readily be imaged with the STM. Unfortunately, most surfaces are not conductive.
View Article and Find Full Text PDFThe high resolution of the scanning tunneling microscope (STM) makes it a potentially important tool for the study of biomaterials. Biological materials can be imaged with the STM by a procedure in which fluid, nonconductive biomaterials are replaced by rigid and highly conductive freeze-fracture replicas. The three-dimensional contours of the ripple phase of dimyristoylphosphatidylcholine bilayers were imaged with unprecedented resolution with commercial STMs and standard freeze-fracture techniques.
View Article and Find Full Text PDFPhys Rev B Condens Matter
October 1986