The two-dimensional Yukawa-Sachdev-Ye-Kitaev (2D-YSYK) model provides a universal theory of quantum phase transitions in metals in the presence of quenched random spatial fluctuations in the local position of the quantum critical point. It has a Fermi surface coupled to a scalar field by spatially random Yukawa interactions. We present full numerical solutions of a self-consistent disorder averaged analysis of the 2D-YSYK model in both the normal and superconducting states, obtaining electronic spectral functions, frequency-dependent conductivity, and superfluid stiffness.
View Article and Find Full Text PDFWe study a controlled large-N theory of electrons coupled to dynamical two-level systems (TLSs) via spatially random interactions. Such a physical situation arises when electrons scatter off low-energy excitations in a metallic glass, such as a charge or stripe glass. Our theory is governed by a non-Gaussian saddle point, which maps to the celebrated spin-boson model.
View Article and Find Full Text PDFOrbital magnetism and the loop currents (LCs) that accompany it have been proposed to emerge in many systems, including cuprates, iridates, and kagome superconductors. In the case of cuprates, LCs have been put forward as the driving force behind the pseudogap, strange-metal behavior, and -wave superconductivity. Here, we investigate whether fluctuating intra-unit-cell LCs can cause unconventional superconductivity.
View Article and Find Full Text PDFA detailed interpretation of scanning tunneling spectra obtained on unconventional superconductors enables one to gain information on the pairing boson. Decisive for this approach are inelastic tunneling events. Due to the lack of momentum conservation in tunneling from or to the sharp tip, those are enhanced in the geometry of a scanning tunneling microscope compared to planar tunnel junctions.
View Article and Find Full Text PDFData-driven methods, in particular machine learning, can help to speed up the discovery of new materials by finding hidden patterns in existing data and using them to identify promising candidate materials. In the case of superconductors, the use of data science tools is to date slowed down by a lack of accessible data. In this work, we present a new and publicly available superconductivity dataset ('3DSC'), featuring the critical temperature T of superconducting materials additionally to tested non-superconductors.
View Article and Find Full Text PDF