Terrestrial carnivorans, with their diverse diets and unique adaptations such as the carnassial tooth, offer insights into the connections between functional traits and the climatic and environmental conditions they inhabit. They shed light on functional trait-environment relationships at the highest trophic levels across a broad range of environmental conditions. In this study, we evaluate the relationship between relative blade length (RBL) of the lower carnassial tooth, a key dietary adaptation among terrestrial carnivorans for slicing and grinding food items, and climate.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
December 2020
Pedestrians are the most vulnerable road user and represent about 23% of the road traffic deaths in the world. A finite element (FE) model corresponding to a 5 percentile female pedestrian (F05-PS) was developed by morphing the Global Human Body Models Consortium (GHBMC) 50 percentile male pedestrian (M50-PS) model to the reconstructed geometry of a recruited small female subject. The material properties of the pedestrian model were assigned based on GHBMC M50-PS model.
View Article and Find Full Text PDFThe use of human body models as an additional data point in the evaluation of human-machine interaction requires quantitative validation. In this study a validation of the Global Human Body Models Consortium (GHBMC) average male occupant model (M50-O v. 4.
View Article and Find Full Text PDFPedestrians represent one of the most vulnerable road users and comprise nearly 22% the road crash-related fatalities in the world. Therefore, protection of pedestrians in car-to-pedestrian collisions (CPC) has recently generated increased attention with regulations involving three subsystem tests. The development of a finite element (FE) pedestrian model could provide a complementary component that characterizes the whole-body response of vehicle-pedestrian interactions and assesses the pedestrian injuries.
View Article and Find Full Text PDFObjective: The objective of this study is to use a validated finite element model of the human body and a certified model of an anthropomorphic test dummy (ATD) to evaluate the effect of simulated precrash braking on driver kinematics, restraint loads, body loads, and computed injury criteria in 4 commonly injured body regions.
Methods: The Global Human Body Models Consortium (GHBMC) 50th percentile male occupant (M50-O) and the Humanetics Hybrid III 50th percentile models were gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and driver airbag. Fifteen simulations per model (30 total) were conducted, including 4 scenarios at 3 severity levels: median, severe, and the U.