The association of 55 dipeptides extracted from aggregation-prone regions of selected proteins was studied by means of multiplexed replica-exchange molecular dynamics simulations with the coarse-grained UNRES model of polypeptide chains. Each simulation was carried out with 320 dipeptide molecules in a periodic box at 0.24 mol/dm concentration, in the 260-370 K temperature range.
View Article and Find Full Text PDFBackground: The Mendelian Disorders of Cornification (MeDOC) comprise a large number of disorders that present with either localised (palmoplantar keratoderma, PPK) or generalised (ichthyoses) signs. The MeDOC are highly heterogenic in terms of genetics and phenotype. Consequently, diagnostic process is challenging and before implementation of the next generation sequencing, was mostly symptomatic, not causal, which limited research on those diseases.
View Article and Find Full Text PDFWound healing complications affect numerous patients each year, creating significant economic and medical challenges. Currently, available methods are not fully effective in the treatment of chronic or complicated wounds; thus, new methods are constantly sought. Our previous studies showed that a peptide designated as PDGF2 derived from PDGF-BB could be a promising drug candidate for wound treatment and that RADA16-I can serve as a release system for bioactive peptides in wound healing.
View Article and Find Full Text PDFHydrogels are three-dimensional polymer networks with hydrophilic properties. The modifiable properties of hydrogels and the structure resembling living tissue allow their versatile application. Therefore, increasing attention is focused on the use of hydrogels as bioinks for three-dimensional (3D) printing in tissue engineering.
View Article and Find Full Text PDFSelf-assembling peptides can be used for the regeneration of severely damaged skin. They can act as scaffolds for skin cells and as a reservoir of active compounds, to accelerate scarless wound healing. To overcome repeated administration of peptides which accelerate healing, we report development of three new peptide biomaterials based on the RADA16-I hydrogel functionalized with a sequence (AAPV) cleaved by human neutrophil elastase and short biologically active peptide motifs, namely GHK, KGHK and RDKVYR.
View Article and Find Full Text PDF