In all metazoans, the expression of group B HMG domain Sox transcription factors is associated with the earliest stages of CNS development. In Drosophila, SoxNeuro (SoxN) is involved in dorso-ventral patterning of the neuroectoderm, and in the formation and segregation of neuroblasts. In this report, we show that SoxN expression persists in a subset of neurons and glial cells of the ventral nerve cord at embryonic stages 15/16.
View Article and Find Full Text PDFSry high mobility group (HMG) box (Sox) transcription factors are involved in the development of central nervous system (CNS) in all metazoans. Little is known on the molecular mechanisms that regulate their transcriptional activity. Covalent posttranslational modification by small ubiquitin-like modifier (SUMO) regulates several nuclear events, including the transcriptional activity of transcription factors.
View Article and Find Full Text PDFThe involvement of the Sox family of transcription factors in the development of the central nervous system (CNS) appears to be conserved in invertebrates and vertebrates. In Drosophila, SoxNeuro (SoxN) was recently shown to be involved in the formation of neuroblasts [Development 129 (2002) 4193; Development 129 (2002) 4219]. Through a yeast two-hybrid assay searching for proteins interacting with SoxN, we have isolated a novel protein in Drosophila, SoxNeuro Co-Factor (SNCF).
View Article and Find Full Text PDFThe detection of chimeric transcripts derived from aberrant chromosomal fusion events provides an exceptionally valuable toolfor the diagnosis of leukemia. We have developed a simple, inexpensive, reproducible, and automated method to quantify RT-PCR products. Our approach utilizesfluorescent PCRfor the co-ampification of the specific fusion transcript with an internal control (HPRT).
View Article and Find Full Text PDF