All four members of the human epidermal growth factor (EGF) receptor (HER) family are implicated in human cancers. Although efficacious in a subset of patients, resistance to single-targeted anti-HER therapy [i.e.
View Article and Find Full Text PDFA new p56lck tyrosine kinase inhibitor WIN 61651 [1,4-dihydro-7-(4-methyl-1-piperizinyl)-1-(4-(4-methyl-1-piperi zinyl))phenyl- 4-oxo-3-quinolinecarboxamide) is described. WIN 61651, which is competitive with ATP, demonstrates selectivity for the lymphoid restricted tyrosine kinase p56lck over serine/threonine kinases, such as protein kinase C and protein kinase A, and over some other tyrosine kinases, including erbB2, epidermal growth factor receptor, and insulin receptor; however, it is equipotent for inhibition of p56lck and the platelet derived growth factor receptor tyrosine kinases. WIN 61651 inhibits p56lck activity in cell-free assays, tyrosine kinase activity in a T lymphocytic cell line, and T cell activation, as measured by IL-2 production by purified CD4 positive peripheral blood T lymphocytes and the mixed lymphocyte reaction.
View Article and Find Full Text PDFBreast Cancer Res Treat
April 1993
Since the poor prognosis associated with HER2 amplified breast cancers might be explained by a mechanistic association between p185HER2 overexpression and therapeutic resistance, we assessed the chemo-endocrine sensitivity of estrogen receptor (ER) containing MCF-7 breast cancer cells transfected with full-length HER2 cDNA. Of the 36 isolated MCF/HER2 subclones, 7 were found to overexpress p185HER2 surface receptor at levels 3 to 45-fold greater than parental or control transfected cells (MCF/neo). The overexpressing transfectants possessed increased inositol-1,4,5-triphosphate-3'-kinase activity comparable to enzyme activity in the endogenously HER2 amplified breast cancer cell lines SK-Br-3 and BT-474.
View Article and Find Full Text PDFA partially agonistic monoclonal antibody, 4D5, known to bind to the extracellular domain of p185HER2 and shown to inhibit long term growth of p185HER2-overexpressing breast cancer cells, was used to study signal transduction and phosphotyrosyl protein substrates associated with this receptor. Normal breast epithelial cells and breast carcinoma cells expressing low levels of p185HER2 were not affected by 4D5. HER2/neu-overexpressing breast cancer cells (BT-474 and SK-Br-3) exposed to 4D5 exhibited rapid phosphorylation of both p185HER2 and an associated 56-kDa phosphotyrosyl protein (ptyr56).
View Article and Find Full Text PDFThe HER2 protooncogene encodes a growth factor receptor-like transmembrane protein tyrosine kinase (p185HER2) whose ligand remains to be fully characterized. The overexpression of p185HER2 is implicated in aggressive forms of breast and ovarian cancers. The role of p185HER2 in aggressive malignancy, as well as its cell surface localization, makes it an attractive target for therapeutic monoclonal antibodies.
View Article and Find Full Text PDF